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This paper discusses the interest rates (IR) modelling in Real World (RW) 

environment. It introduces and compares three approaches: the so-called 

forward-looking, backward-looking, and hybrid techniques. The forward-

looking approach leans on the classical Risk Neutral (RN) modelling 

framework, whereas the backward-looking approach is designed to replicate 

the stylized facts observed in historical time series. Finally, the hybrid 

approach is meant to combine the advantages of both approaches. 

The RW denomination can cover a wide range of models and calibration processes that can all be very useful depending 

on the modeller goal. In all generality, a RW measure is supposed to refer to ‘price distributions in which market risk 

preferences are embedded’ (Liu et al., 2007). In comparison, the RN measure is based on pure market expectations. 

These two frameworks are widely used in the insurance industry for financial communication and decision-making. As 

illustrated by Milliman CHESS,1 the landscape of economic scenarios generators has grown in terms of sophistication and 

related regulatory compliance.  

RW economic scenarios can be used by insurers for several applications. First, they can be used to perform ALM studies, 

for instance, in order to find an optimal allocation of their portfolio. Another application is the computation of the Solvency 

Capital Requirement within an Internal Model by generating scenarios on a one-year horizon and verifying that the insurer 

can meet its obligation over the simulated year with a 99.5% probability. Insurers also need RW scenarios through a 

business plan horizon to implement their ORSA process. Finally, RW simulations can be employed to price assets or 

liabilities that include a risk premium, with a view to perform portfolio transactions (purchase or sale).   

Unlike RN modelling, to which special attention was paid in recent years, particularly in terms of calibration and market 

impact studies (see Arrouy et al., 2017; Vedani et al., 2017; Borel-Mathurin and Vedani, 2019; Arrouy et al., 2019; Andres 

et al., 2020; and Borel-Mathurin et al., 2020), researches on RW modelling, calibration, and validation remain limited. This 

paper aims to provide a comprehensive description of different methods dedicated to RW modelling and calibration. More 

specifically, we present three different approaches of RW modelling and calibration, namely the so-called forward-looking, 

backward-looking, and hybrid approaches. This paper also opens the door for future studies related to the validation of 

RW scenarios. 

  

 
1 https://fr.milliman.com/fr-fr/products/milliman-chess. 

https://fr.milliman.com/fr-fr/products/milliman-chess
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Forward-looking RW modelling – market risk preferences while keeping 

an equivalence with risk-neutrality 
A RW model can be recovered by performing a change of probability measure from an original RN model thanks to Girsanov 

theorem (Girsanov, 1960). In practice, the idea is to include a (potentially time-dependent) risk premium in the model.  

Hull et al., 2014, introduced a quite simple example of this change of measure. Consider a single-factor Markov model for 

the short rate 𝑟, under the RN probability 𝒬:  

𝑑𝑟𝑡 = 𝜇(𝑟𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑟𝑡, 𝑡)𝑑𝑊𝑡
𝒬

. 

The drift 𝜇 and volatility 𝜎 are functions of the time and the short rate. 𝑊𝑡
𝒬
 is a Brownian motion under 𝒬. Setting 𝜇(𝑟, 𝑡) =

𝑎(𝑏 − 𝑟) and 𝜎 constant yields the well-known Vasicek model. Various alternative choices for the drift and volatility 

coefficients can be made (see in particular Brigo and Mercurio, 2007, for a thorough survey). Applying Girsanov theorem, 

one simply gets the associated RW dynamics under the RW probability 𝒫: 

𝑑𝑟𝑡 = (𝜇(𝑟𝑡, 𝑡) + 𝜆(𝑟𝑡, 𝑡))𝑑𝑡 + 𝜎(𝑟𝑡, 𝑡)𝑑𝑊𝑡
𝒫 . 

The risk premium 𝜆, reflecting the market price for interest rates risk, can be a function of the time and the short rate and can 

be calibrated on historical data or future expectations/targets. Note that, in general, forward-looking models therefore still rely 

on historical data for calculating the risk premiums, while the underlying RN dynamics may also involve the use of historical 

series through, for example, inter-forward rates correlations calibration within market models, see Arrouy et al., 2017.  

A structural property of forward-looking approach is that the volatility process remains the same in RN and RW 

environments. That might be seen as a strong assumption since the market implied and historical volatilities are different 

in practice. This can be attributed in large part to the fact that market expectancies are forward-looking estimates not 

compatible with the historical backward-looking estimates based on time-series and historical statistics. This link between 

historical and implied volatilities has been studied in a relatively limited number of references, see Christensen and 

Hansen, 2002. 

The forward-looking approach has the advantage of preserving the consistency between RN and RW modelling. It may be 

particularly convenient for some applications, such as when coherent forecasts are required for both realized (level of 

equity and interest rates) and implied RN quantities (implied volatility, implied default probabilities). Moreover, it allows to 

leverage the extensive literature on RN calibration. Nevertheless, forward-looking approaches suffer from major 

drawbacks as they fail to replicate main stylized facts, such as the asymmetry or the non-stationarity of the historical time 

series. This can be an issue for some applications such as portfolio allocation or economic capital calculation, from both a 

methodological and regulatory standpoint.  

Backward-looking RW approach 
As an alternative to forward-looking methods, the RW measure can be induced by a backward-looking model calibration 

relying on time series. Such an approach appears to be relevant to capture the key historical features of the risk driver 

using a proper statistical approach, in order to derive future scenarios that are coherent with the historical observations. 

This is a strong Bayesian assumption that one possesses a useful a priori on what is going to happen in future years. 

Indeed the underlying processes (yields, returns,… ) are barely stationary.2   

Nevertheless, this approach is often used to capture realism in projections. For example, as far as IR models are 

concerned, a mean-reversion model can be useful for long-term projections. Another possibility can be the use of 

expertise of asset management specialists to introduce a priori targeted values for the simulated quantities (e.g., middle or 

long-term mean targets for IR and for indices). Note that by nature, backward-looking models don’t necessarily have risk 

neutrality even as a limiting case of the parameters, for example, they aren’t necessarily ‘term structure models’ in the 

sense used in risk-neutral formulations. 

This practical backward-looking approach is currently used for multiple applications, including economic capital models 

and asset allocation.  

  

 
2 As presented below, some alternative (recent and still in progress) backward-looking approaches using fractional Brownian motions allow to simulate non-

stationary RW processes. 
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EXAMPLE OF BACKWARD-LOOKING IR MODELS 

Key criterion when selecting an RW model for any projection is to compare various possibilities depending on the 

projections realism and the goal of the user. 

In all generality, a yield curve (e.g., for maturities 1 to 30) can be largely explained as a linear combination of three 

principal components, the so-called level, slope, and curvature. These are easily captured through a Principal Component 

Analysis (PCA). In order to model quantities that are historically stationary, the PCA is generally applied on a 

transformation of the rates curve. For example, one can work on the log-ratios or the differences. In the former case, a 

shift can also be applied in order to be able to model negative rates. If one considers a model that describes the rates 

curve through its variations (log-ratios or differences), then the PCA writes: 

Δ𝑟𝑚(𝑡) = 𝛼𝑐𝑚
1 + 𝛽𝑐𝑚

2 + 𝛾𝑐𝑚
3 , 

where Δ𝑟𝑚(𝑡) is the variation of the interest rate of maturity 𝑚,  (𝛼, 𝛽, 𝛾) are the three parameters defining the model and 

where (𝑐𝑚
1 )1≤𝑚≤30 is the first “level” component, (𝑐𝑚

2 )1≤𝑚≤30 is the second ‘slope’ component and (𝑐𝑚
3 )1≤𝑚≤30 is the third 

‘curvature’ component. 

FIGURE 1: EXAMPLE OF HISTORICAL IR PRINCIPAL COMPONENTS (3 FIRST PRINCIPAL COMPONENTS OF A PCA)  

 

This simplification leads to various projection models for the interest rates 𝑟𝑚(𝑡). They differ in the way of modelling the 

series  (𝛼𝑡, 𝛽𝑡 , 𝛾𝑡)𝑡 (e.g., prescribing a Vasicek dynamics for each coefficient) so the complexity is limited to a fixed number 

of random factors (three factors in the previous example). An alternative simplification scheme is the Nelson-Siegel (NS) 

model used in particular in Diebold and Li, 2005. Under the NS model, the curve is parametric and relies on four 

parameters (𝛽0, 𝛽1 , 𝛽3, 𝜆):   

Δ𝑟𝑚 = 𝛽0 + 𝛽1

1 − 𝑒
−

𝑚
𝜆

𝑚
𝜆

+ 𝛽2 (
1 − 𝑒

−
𝑚
𝜆

𝑚
𝜆

− 𝑒
−

𝑚
𝜆 ). 

In practice, once 𝜆 is calibrated, this scheme writes as a version of PCA modelling with components 𝑓𝑚
1 = 1 , 𝑓𝑚

2 =
1−𝑒

−
𝑚
𝜆

𝑚

𝜆

 

and 𝑓𝑚
3 =

1−𝑒
−

𝑚
𝜆

𝑚

𝜆

− 𝑒−
𝑚

𝜆 . 

PC1 - level PC2 - slope PC3 - curvature



MILLIMAN WHITE PAPER 

Challenges in the calibration of real world models 4 September 2021 

within Economic Scenarios Generators 

FIGURE 2: EXAMPLE OF NELSON-SIEGEL FUNCTIONALS (𝝀 = 𝟐. 𝟑𝟑𝟕) 

 

As one can see, the Nelson-Siegel and PCA components have similar shapes, with some differences however for the 

second principal component. Similarly to the PCA scheme, it is possible to use this parametric framework and a model to 

project the (𝛽0, 𝛽1 , 𝛽2) as a time series based on a given stochastic diffusion (e.g., Vasicek model) in order to recover RW 

forecasts for 𝑟𝑚(𝑡). It is possible to consider an additional second curvature component which defines the Nelson-Siegel-

Svensson (see Svensson, 2005) model. It is in use, for example, by central banks such as the Federal Reserve (see 

Gurkaynak et al., 2007) or the European Central Bank (see Coroneo et al., 2011). 

Let us make two remarks before moving to the calibration of backward-looking models.  

First, the two provided examples can lead one to think that the backward-looking approach reduces to PCA models but the 

backward-looking approach is in fact more general. It includes any approach which is driven by historical data and is able 

to reproduce its main characteristics. In this section, we took PCA models as example since they have a strong ability to 

catch the general aspect of historical data. In fact, PCA models are not only used within backward-looking approaches but 

also within forward-looking approaches. In particular, PCA can be used in RN market-consistent IR models, to assess 

inter-forward rates correlations (e.g., in Libor Market Models with or without displaced diffusion and stochastic volatility).  

Second, the use of some backward-looking RW models, in particular those without mean-reversion or prescribed volatility 

targets can lead to uncontrolled simulations of yield curves, especially for middle- to long-term horizons. This aspect is not 

essential3 for some applications but simulations should be checked to verify that yield curves do not diverge ‘too far’ away 

from term structure explanation. 

CALIBRATING THE MODEL 

The model calibration may seem straightforward but can raise some questions. The backward-looking calibration requires 

a set of historical data and to optimize the parameters to best fit these data. The optimization program is generally either a 

likelihood maximization or a least squares program (see James & Webber, 2000). 

The calibrated parameters may be highly dependent on the considered time-period of the data but also on the time-step 

between data points. 

 Regarding the considered time-period, it is well known that financial data are barely stationary due in particular to 

specific stressed periods (bubbles, crises, national or international economic uncertainty,…) leading to a non-

stationary volatility of data through time. To integrate this variation in stochastic behaviour of IR, leading to structural 

breaks in time series, it is possible to consider, and test, regime-switching models (see Gray, 1996; Ang and Bekaert, 

2002). These models have shown good results to project short-term IR but the number of parameters is increasing, 

which often leads to a lack of stability.  

  

 
3 The first AAA RW-generator used in the U.S. also didn’t have a mean-reversion property in its diffusion model.  

f1 - level f2 - slope f3 - curvature
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 Overall, best practice would be to achieve an optimal tradeoff between using the largest historical dataset available and 

relying on relatively recent conditions that will better reflect future forecasts. In addition, a large set introduces stability in 

the calibrated parameters, which is valuable when the calibration set is regularly updated with most recent data. 

 Considering the time step, the lack of stationarity can lead to great differences in estimation and simulation. The 

issue is linked with an autocorrelation of historical financial processes, a property that cannot be captured using 

Brownian motions to project future evolutions of interest rates. The autocovariance of a standard Brownian Motion 

(𝐵𝑢)𝑢≥0 is: 

𝔼[𝐵𝑠𝐵𝑡] = min(𝑠, 𝑡)  ∀𝑠, 𝑡 ∈ ℝ+, 

which is not consistent with real market data. This problem is partly solved using fractional Brownian motions (fBM, 

see Sottinen, 2001; Oksendal, 2003). These processes can better capture the historical autocovariance of IR 

increments through a specific parameter, the Hurst index 𝐻 ∈ (0,1) that account for more general autocorrelation 

functions. In particular, choosing 𝐻 >
1

2
 allows to model processes with long memory. Denoting a fBM of Hurst index 𝐻 

by (𝐵𝑢
𝐻)𝑢≥0, we have: 

𝔼[𝐵𝑠
𝐻, 𝐵𝑡

𝐻] =
1

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻). 

Observe that the standard Brownian motion can be recovered with 𝐻 =
1

2
. The 𝐻 index has a great impact on the 

volatility process as shown in the figure below. 

In their seminal paper, Gatheral et al., 2018, showed that the log-volatility of the main stock indexes essentially 

behaves as a fBM with Hurst index of order 0.1. Since then, models based on fBM have become very popular and 

represent an active field of research in financial mathematics. Besides, fractional models don’t generate trajectories 

presenting volatility clustering, which is largely acknowledged as a stylized fact in historical data. Instead, GARCH or 

regime-switching models allow describing this phenomenon. Once again, there is no simple answer and any choice 

should be made under conservative motivations. 

FIGURE 3: FBM PATHS ILLUSTRATION 

 

These backward-looking approaches show two major drawbacks. The first one is to assume distribution stationarity 

for future scenarios, framed by what happened in the past. The second is a limited ability of these models in their 

standard form to capture distributional targets, for example, from asset management experts, when the model 

calibration is fully driven by historical data. As a particular example, portfolio allocation is an area which benefits from 

the value of expert judgement in setting coherent assumptions, for example, for return on risk across asset classes, in 

view of avoiding outliers that may skew results. 
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Towards hybrid method 
Hybrid approaches expand the role of history in calibrations, beyond the forward-looking case, but make a point of 

maintaining the connection to the risk-neutral limit, which remains a limiting case for a certain parameterization. In  

other words, the hybrid approach aims to combine the advantages of both the forward-looking and the backward- 

looking techniques: 

1. By retaining the core structure of models that have been successfully used in RN modelling, due to their 

tractability, and as such preserving a coherence between the RN and the RW universe (forward-looking property)   

2. By calibrating the parameters of the dynamics that drive the distributional properties of the model on past data 

(backward-looking character) to make the scenarios consistent with the observed historical features (volatility, 

dispersion, correlations…) 

Let us consider as an example the two factors Gaussian model (G2++ for short; see Brigo and Mercurio, 2007, for more 

details) used to simulate the short rate 𝑟𝑡: 

𝑟𝑡 = 𝑥𝑡 + 𝑦𝑡 + 𝜑(𝑡), 𝑟0 = 𝑟0
∗, 

where the processes (𝑥𝑡)𝑡≥0 and (𝑦𝑡)𝑡≥0 satisfy:  

d𝑥𝑡 = −𝑎𝑥𝑡d𝑡 + 𝜎𝑑𝑊𝑡
1, 𝑥0 = 0, 

d𝑦𝑡 = −𝑏𝑦𝑡d𝑡 + 𝜂𝑑𝑊𝑡
2, 𝑦0 = 0, 

with 𝜑(𝑡), the deterministic function used to fit the initial yield curve, (𝑊𝑡
1)𝑡≥0 and (𝑊𝑡

2)𝑡≥0 two correlated Brownian 

motions under the RN probability 𝒬, such that 𝑑𝑊𝒕
1 ∙ 𝑑𝑊𝑡

2 = 𝜌𝑑𝑡. When changing measure to RW measure this diffusion 

leads to: 

𝑟𝑡 = 𝑥𝑡 + 𝑦𝑡 + 𝜑(𝑡), 𝑟0 = 𝑟0
∗, 

where the processes (𝑥𝑡)𝑡≥0 and (𝑦𝑡)𝑡≥0 satisfy:  

d𝑥𝑡 = −𝑎𝑥𝑡d𝑡 + σ𝜆1(𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡
1, 𝑥0 = 0, 

d𝑦𝑡 = −𝑏𝑦𝑡d𝑡 + 𝜂𝜆2(𝑡)𝑑𝑡 + 𝜂𝑑𝐵𝑡
2, 𝑦0 = 0, 

with (𝐵𝑡
1)𝑡≥0 and (𝐵𝑡

2)𝑡≥0 two correlated Brownian motions under the RW probability 𝒫 and where 𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡)) is 

the risk premium assumed deterministic. The correlation stays the same under 𝒫: 𝑑𝐵𝑡
1 ∙ 𝑑𝐵𝑡

2 = 𝜌𝑑𝑡.  

Under 𝒫 or 𝒬 it is possible to derive closed-form formulas for the volatility, dispersion, and correlation of interest rates 

using Ito’s isometry. It should be noted that these formulas only depend on the so-called distributional parameters 

(𝑎, 𝑏, 𝜎, 𝜂, 𝜌) and not on the risk premium or the function 𝜑 (it is an advantage of using a Gaussian model). The volatility, 

dispersion and correlation within the G2++ model can then be compared to the same quantities estimated on the 

considered historical dataset. This enables a calibration of parameters (𝑎, 𝑏, 𝜎, 𝜂, 𝜌). Then, using these parameters it is 

easy to calibrate a parametrization of the functions 𝜑(𝑡) and 𝜆(𝑡). This leads to a three-step approach: 

 Step 1: Calibration of parameters (𝑎, 𝑏, 𝜎, 𝜂, 𝜌) based on historical targets (volatilities, distribution dispersion, and 

historical correlations). 

 Step 2: Assessment of the function 𝜑(𝑡) to replicate the initial yield curve (e.g., EIOPA RFR disclosure). For this 

purpose, we work again under the RN probability 𝒬 in order to be able to use the ordinary pricing formulas of the 

zero-coupon bonds.  

 Step 3: Once all other parameters are estimated, use of economic expectations on long-term interest rates levels to 

estimate 𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡)). 

The figure below depicts the shape of simulated rates (1,000 random paths of Zero-Coupon rates of five-year maturity) 

using this hybrid method. In particular, the target mean and dispersion (orange lines and arrow) are compared with 

simulated quantities (red items). 
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FIGURE 4: HYBRID APPROACH ILLUSTRATION: THE STATISTICAL DISTRIBUTION OF 10 YEARS RW IR SIMULATIONS WITH 5-YEAR MATURITY 

ARE REPRESENTED. 

 

Before concluding, we summarize in the table below the pros and cons of the three presented approaches: 

 Pros Cons 

Forward-looking  
 Consistent with RN models 

 Allows reuse of the calibrated 

parameters in an RN framework 

 Fails to replicate stylized facts 

observed on historical time series  

Backward-looking  
 Allows replication of historical  

stylized facts 

 Inconsistent with RN models 

Hybrid 
 Consistent with RN models 

 Allows replication of historical  

stylized facts 

 Possibly, less realistic shapes  

than those from the backward- 

looking approach 
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Conclusion  

In practice, no specific RW framework is regulatory compulsory for insurance undertakings be it for short term (internal model 

one-year projections) or long term (ORSA projections, business plan horizon). A forward-looking, backward-looking, or hybrid 

model and calibration may be used as far as it is well justified, produces realistic evolutions and is consistent with the 

modelling objective. Overall, a legitimate model must be well understood by actuaries. Its parameters’ stability through time 

should be checked, and all movements should lead to impact studies and level sets that may be plotted, used, and justified.  

We recognize that the best ‘one-size-fits-all’ ESG solution is the one that provides the choice of different methods that 

work better for different applications / economic environments. For more insights, visit 

https://www.milliman.com/en/products/milliman-chess. 
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